fedlab
Contents
–
侧重点在 adaptive semi
https://ijcai2022.scimeeting.cn/cn/web/program/15678
https://ijcaipcfl2022.scimeeting.cn/cn/web/index/15792_1264754__
Adaptive:
之前一篇待看Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Source-Adaptive Discriminative Kernels based Network for Remote Sensing Pansharpening
Adaptive Convolutional Dictionary Network for CT Metal Artifact Reduction
ER-SAN: Enhanced-Adaptive Relation Self-Attention Network for Image Captioning
Constrained Adaptive Projection with Pretrained Features for Anomaly Detection
semi:
Region-level Contrastive and Consistency Learning for Semi-Supervised Semantic Segmentation
Uncertainty-Guided Pixel Contrastive Learning for Semi-Supervised Medical Image
Wei Wan, Shengshan Hu, Jianrong Lu, LEO YU ZHANG, Hai Jin and Yuanyuan He. Shielding Federated Learning: Robust Aggregation with Adaptive Client Selection
Limitations of Existing Defenses 1.They pay little attention to the client selection step. 2.They are vulnerable to sybil/collusion attacks. 3.They perform poorly in non-IID scenarios. 4.They rely on unrealistic assumptions (e.g.,validation dataset,number of attackers,local dataset size). 289/5000 现有防御的局限性
1.他们很少注意客户选择的步骤。
2.它们很容易受到sybil/勾结攻击。
3.它们在非iid场景中表现不佳。
4.它们依赖于不现实的假设(例如,验证数据集、攻击者的数量、本地数据集的大小)。
Hong Zhang, Ji Liu, Juncheng Jia, Yang Zhou, Huaiyu Dai and Dejing Dou. FedDUAP: Federated Learning with Dynamic Update and Adaptive Pruning Using Shared Data on the Server
数据异构和效率-noiid
–
- Xinyi Shang, Yang Lu, Gang Huang and Hanzi Wang. Federated Learning on Heterogeneous and Long-Tailed Data via Classifier Re-Training with Federated Features
请问长尾和noniid有什么区别
现在对non-iid的研究大部分是基于全局数据是平衡的这一个假设;但是在真实应用中,全局数据往往是长尾分布,也就是不均衡分布。
全局长尾分布和non-iid是两个问题,可以组合。
https://zhuanlan.zhihu.com/p/422558527
–
- Yuezhou Wu, Yan Kang, Jiahuan Luo, Yuanqin He and Qiang Yang. FedCG: Leverage Conditional GAN for Protecting Privacy and Maintaining Competitive Performance in Federated Learning
split learning
https://www.zhihu.com/question/330153893/answer/1626853113
https://www.zhihu.com/question/520616559/answer/2405512606
https://blog.csdn.net/weixin_43235829/article/details/123814951
https://zhuanlan.zhihu.com/p/565844474
https://blog.csdn.net/bashendixie5/article/details/124632427
–
对比学习与fl
–
AAAI 2023 FedALA
https://mp.weixin.qq.com/s/G0ZcIwMstjK1xdAUOr3z1w
该论文提出了一种用于联邦学习的自适应本地聚合方法
,通过从全局模型中自动捕获客户机所需信息的方式来应对联邦学习中的统计异质性问题。
Author kong
LastMod 2022-10-20