[fedlab]-blog->github

benchmarks

数据划分整合

fcube

专栏

https://www.bilibili.com/video/BV1pG4y1t7t5/?spm_id_from=333.999.list.card_archive.click&vd_source=ad42090d7d6fcdfc144126ae0e2884ac

侧重点在 adaptive semi

https://ijcai2022.scimeeting.cn/cn/web/program/15678

https://ijcaipcfl2022.scimeeting.cn/cn/web/index/15792_1264754__

Adaptive:

之前一篇待看Adaptive Federated Learning in Resource Constrained Edge Computing Systems

Source-Adaptive Discriminative Kernels based Network for Remote Sensing Pansharpening

Adaptive Convolutional Dictionary Network for CT Metal Artifact Reduction

ER-SAN: Enhanced-Adaptive Relation Self-Attention Network for Image Captioning

Constrained Adaptive Projection with Pretrained Features for Anomaly Detection

https://ai-paper-collector.vercel.app/r?query=Adaptive+Federated&year=&sp_year=&sp_author=&confs=AAAI&confs=ACL&confs=AISTATS&confs=BMVC&confs=CIKM&confs=COLING&confs=COLT&confs=CVPR&confs=ECCV&confs=ECIR&confs=EMNLP&confs=ICASSP&confs=ICCV&confs=ICDM&confs=ICLR&confs=ICME&confs=ICML&confs=IJCAI&confs=INTERSPEECH&confs=ISWC&confs=JMLR&confs=KDD&confs=MICCAI&confs=MLSYS&confs=MM&confs=NAACL&confs=NIPS&confs=RECSYS&confs=SIGIR&confs=TASLP&confs=TIP&confs=TKDE&confs=TOIS&confs=TPAMI&confs=VLDB&confs=WACV&confs=WSDM&confs=WWW

semi:

Region-level Contrastive and Consistency Learning for Semi-Supervised Semantic Segmentation

Uncertainty-Guided Pixel Contrastive Learning for Semi-Supervised Medical Image

https://ai-paper-collector.vercel.app/r?query=Semi-Supervised+Federated&year=&sp_year=&sp_author=&confs=AAAI&confs=ACL&confs=AISTATS&confs=BMVC&confs=CIKM&confs=COLING&confs=COLT&confs=CVPR&confs=ECCV&confs=ECIR&confs=EMNLP&confs=ICASSP&confs=ICCV&confs=ICDM&confs=ICLR&confs=ICME&confs=ICML&confs=IJCAI&confs=INTERSPEECH&confs=ISWC&confs=JMLR&confs=KDD&confs=MICCAI&confs=MLSYS&confs=MM&confs=NAACL&confs=NIPS&confs=RECSYS&confs=SIGIR&confs=TASLP&confs=TIP&confs=TKDE&confs=TOIS&confs=TPAMI&confs=VLDB&confs=WACV&confs=WSDM&confs=WWW


Wei Wan, Shengshan Hu, Jianrong Lu, LEO YU ZHANG, Hai Jin and Yuanyuan He. Shielding Federated Learning: Robust Aggregation with Adaptive Client Selection

Limitations of Existing Defenses 1.They pay little attention to the client selection step. 2.They are vulnerable to sybil/collusion attacks. 3.They perform poorly in non-IID scenarios. 4.They rely on unrealistic assumptions (e.g.,validation dataset,number of attackers,local dataset size). 289/5000 现有防御的局限性

1.他们很少注意客户选择的步骤。

2.它们很容易受到sybil/勾结攻击。

3.它们在非iid场景中表现不佳。

4.它们依赖于不现实的假设(例如,验证数据集、攻击者的数量、本地数据集的大小)。

Hong Zhang, Ji Liu, Juncheng Jia, Yang Zhou, Huaiyu Dai and Dejing Dou. FedDUAP: Federated Learning with Dynamic Update and Adaptive Pruning Using Shared Data on the Server

数据异构和效率-noiid

  1. Xinyi Shang, Yang Lu, Gang Huang and Hanzi Wang. Federated Learning on Heterogeneous and Long-Tailed Data via Classifier Re-Training with Federated Features

请问长尾和noniid有什么区别

现在对non-iid的研究大部分是基于全局数据是平衡的这一个假设;但是在真实应用中,全局数据往往是长尾分布,也就是不均衡分布。

全局长尾分布和non-iid是两个问题,可以组合。

https://zhuanlan.zhihu.com/p/422558527

  1. Yuezhou Wu, Yan Kang, Jiahuan Luo, Yuanqin He and Qiang Yang. FedCG: Leverage Conditional GAN for Protecting Privacy and Maintaining Competitive Performance in Federated Learning

split learning

https://www.zhihu.com/question/330153893/answer/1626853113

https://www.zhihu.com/question/520616559/answer/2405512606

https://blog.csdn.net/weixin_43235829/article/details/123814951

https://zhuanlan.zhihu.com/p/565844474

https://blog.csdn.net/bashendixie5/article/details/124632427

对比学习与fl

AAAI 2023 FedALA

https://mp.weixin.qq.com/s/G0ZcIwMstjK1xdAUOr3z1w

该论文提出了一种用于联邦学习的自适应本地聚合方法,通过从全局模型中自动捕获客户机所需信息的方式来应对联邦学习中的统计异质性问题。